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Abstract

Dietary intake of long-chain ω-3 (or n-3) polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA), and docosahexaenoic
acid (DHA) can affect numerous processes in the body, including cardiovascular, neurological and immune functions, as well as cancer.
Studies on human cancer cell lines, animal models and preliminary trials with human subjects suggest that administration of EPA and
DHA, found naturally in our diet in fatty fish, can alter toxicities and/or activity of many drugs used to treat cancer. Multiple
mechanisms are proposed to explain how n-3 PUFA modulate the tumor cell response to chemotherapeutic drugs. n-3 PUFA are readily
incorporated into cell membranes and lipid rafts, and their incorporation may affect membrane-associated signaling proteins such as Ras,
Akt and Her-2/neu. Due to their high susceptibility to oxidation, it has also been proposed that n-3 PUFA may cause irreversible tumor
cell damage through increased lipid peroxidation. n-3 PUFA may increase tumor cell susceptibility to apoptosis by altering expression or
function of apoptotic proteins, or by modulating activity of survival-related transcription factors such as nuclear factor-κB. Some studies
suggest n-3 PUFA may increase drug uptake or even enhance drug activation (e.g., in the case of some nucleoside analogue drugs).
Further research is warranted to identify specific mechanisms by which n-3 PUFA increase chemotherapy efficacy and to determine the
optimal cellular/membrane levels of n-3 PUFA required to promote these mechanisms, such that these fatty acids may be prescribed as
adjuvants to chemotherapy.
© 2008 Elsevier Inc. All rights reserved.
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1. ω-3 (n-3) polyunsaturated fatty acids

The ω-3 (or n-3) fatty acids refer to a class of
polyunsaturated fatty acids (PUFA) having the first double
bond in the n-3 position (three carbons from the methyl end
of the carbon chain). n-3 fatty acids are considered essential
since they cannot be synthesized by mammals and so must
be obtained from the diet [1]. The three main dietary n-3
fatty acids are α-linolenic acid (C18:3n-3, all-cis-9,12,15-
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octadecatrienoic acid), found in green leafy vegetables,
walnuts, canola oil, soybean oil, and flaxseed; and the
longer-chain eicosapentaenoic acid (C20:5n-3, all-cis-
eicosa-5,8,11,14,17-pentaenoic acid, EPA) and docosahex-
aenoic acid (C22:6n-3, all-cis-docosa-4,7,10,13,16,19-hex-
aenoic acid, DHA), found primarily in cold-water fatty fish
(Fig. 1). Human beings are able to produce EPA from α-
linolenic acid through chain elongation and desaturation;
however, the extent of this conversion is quite inefficient
(∼5–10% of α-linolenic acid is converted to EPA) [2,3],
such that EPA and DHA are acquired mainly through
consumption of fish. Amounts of n-3 fatty acids in fish vary
widely depending on the type of fish and habitat in which
they live, but in general, higher concentrations of EPA and
DHA are found in sardines, salmon, mackerel, herring and
rainbow trout [4]. Unless otherwise stated, the use of “n-3
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Fig. 1. Structures of the main dietary n-3 PUFA.
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PUFA” or “n-3 fatty acid” in this review refers to EPA and/
or DHA.
2. Evidence that n-3 PUFA can improve the response
to chemotherapy

Several studies demonstrated that n-3 PUFA sensitize
tumor cells to effects of anticancer drugs in culture or in
tumor-bearing animals. In vitro, DHA and/or EPA improve
cytotoxic effects of several anticancer drugs [doxorubicin,
epirubicin, paclitaxel, 5-fluorouracil, cytosine arabinoside
(Ara-C), mitomycin, arsenic trioxide] toward various human
Table 1
n-3 PUFA modulation of the tumor response to chemotherapy in animal models

Animal model Tumor type Diet fat Diet n-3 PUFA

Female Fisher
344 rats

Ward colon
tumor

20% w/w 0.64% w/w EPA+
0.16% w/w DHA

Female Sprague–
Dawley rats

Mammary
(NMU-induced)

15% w/w ∼0.7 g DHA/day per rat
(∼8% w/w DHASCO)

Female athymic
nu/nu mice

Mammary
(MDA-MB-231)

5% w/w 3% w/w FOC (34% EPA,
24% DHA)+2% w/w CO

Male Fischer
344 rats

Fibrosarcoma 10% w/w 10% w/w DHASCO
(46% DHA)

Male ddY mice None N/A 5 or 50 mg/kg BW

Male Swiss
mice

None 10% w/w 1–3% w/w INCELL
AAFA (55% EPA+DHA)

Male Wistar
rats

None N/A 1% DHAwith or without
protein supplementation

Adult dogs Lymphoblastic
lymphoma

33% w/w 2.9% w/w EPA+
2.4% w/w DHA+
5.5% w/w arginine

Male BDF1
mice

L1210
leukemia

5% or 10% w/w 1.5% or 3.5% w/w
DHA (3% or
8% w/w DHASCO)

DHASCO, a DHA-enriched oil produced by microalgae; FOC, fish oil concentra
weight; N/A, not available; SBO, soybean oil; RBCs, red blood cells.
cancer cell lines, including those of breast, colon, bladder,
neuroblastoma, and glioblastoma [5–13]. In animal models,
representing a variety of tumor sites, dietary supplementation
with DHA and/or EPA in combination with chemotherapeu-
tic drugs (Ara-C, doxorubicin, epirubicin, irinotecan,
methotrexate) decreased tumor size [14–16], reduced side
effects [17–20] and prolonged survival [21,22] (Table 1).

Few studies have been conducted with human cancer
patients to examine effects of n-3 PUFA specifically on
tumor response to chemotherapy or drug-induced side
effects. In a recent study, patients with advanced colorectal
cancer consumed an oral nutritional supplement (ProSure)
that provided 2.18 g EPA and 0.92 g DHA per day for up
to 9 weeks, prior to and during chemotherapy treatment
[23]. Patients experienced significant increases in body
weight and energy levels while consuming the n-3 PUFA-
enriched supplement, which were maintained during the
course of chemotherapy [23]. Although the sample size was
too small to draw conclusions regarding effects of EPA on
chemotherapy-induced side effects, there was a trend
toward reduced diarrhea and fatigue among compliant
patients [23]. In another study, patients with cancer
cachexia who were receiving chemotherapy consumed an
oral nutritional supplement enriched with EPA (median
EPA intake was 1.06 g/day at Week 4 and 1.36 g/day at
Week 8) for 8 weeks [24]. Patients consuming the EPA-
enriched supplement had increased protein and energy
Chemotherapy
drug

Effect of n-3 PUFA Reference

Irinotecan
(CPT-11)

CPT-11+EPA/DHA ↓ tumor volume cf.
CPT-11+mixed fat control diet

[14]

Epirubicin Epirubicin+DHA ↓ tumor area cf.
epirubicin+palm oil

[15]

Doxorubicin
(DOX)

DOX+FOC ↓ tumor size cf.
DOX+5% CO

[16]

Ara-C Ara-C+DHA ↑ granulocyte- macrophage
precursors in bone marrow and
↑ intestinal crypt depth and villus
height cf. Ara-C+10% SO

[17]

Methotrexate
(MTX)

MTX+5 mg/kg DHA ↓ MTX-induced
intestinal permeability

[18]

Irinotecan
(CPT-11)

CPT-11+2–3% AAFA ↓ apoptotic
intestinal cells, ↓ liver PGE2 and
↑ RBCs cf. CPT-11+10% CO

[19]

5-fluorouracil
(5-FU)

5-FU+DHA+protein ↑ intestinal mucosa
length and crypt depth, and ↓ apoptotic
cells in intestinal crypts cf.
5-FU+standard diet

[20]

DOX DOX+n-3 PUFA+arginine ↑ disease-free
interval and survival time of dogs with
stage III lymphoma cf. DOX+SBO

[21]

Ara-C Ara-C+1.5% DHA ↑ survival time cf.
Ara-C+chow, but survival time was not
different from animals fed Ara-C+5%
or 10% SO

[22]

te; CO, corn oil; SO, safflower oil; Ara-C, cytosine arabinoside; BW, body



able 2
otential mechanisms by which n-3 PUFA affect cellular function

echanism References

odulation of eicosanoid production by: [30–32]
• Displacing arachidonic acid from cell membranes
• Competing with n-6 PUFA for desaturase and

elongase enzymes, as well as cyclooxygenase
and lipoxygenase enzymes

• Decreasing expression of cyclooxygenase enzymes
lteration of membrane fluidity or permeability [33–36]
hanges in the production of lipid second messengers
(e.g., diacylglycerol, ceramide)

[37–39]

corporation into signaling molecules
(e.g., diacylglycerol, acylated proteins)

[37,40,41]

corporation into lipid rafts, leading to changes
in the distribution and/or activity of raft-related
signaling proteins

[42–48]

odulation of gene expression [31,49]
odulation of gene expression via activation of
peroxisome proliferator-activated receptors

[50,51]

Modulation of transcription factor activity (e.g., NFκB) [52–57]
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intakes and improved nutritional status and quality of life
assessments compared to their baseline measures [24].

Breast cancer patients with higher concentrations of
DHA in breast adipose tissue at the time of cancer diagnosis
were reported to respond more favorably to chemotherapy
(i.e., had greater tumor regression) than patients with lower
levels of n-3 PUFA [25]. Since diet is the only source of n-3
PUFA, this suggests that patients with higher DHA intakes
had a more beneficial response to chemotherapy. The same
group of researchers went on to validate these promising
clinical observations in a rat model of mammary cancer.
Sprague–Dawley rats were randomized to a diet supple-
mented either with corn oil or with a microalgae-produced
oil rich in DHA. Rats were subsequently treated with
epirubicin; in the DHA-supplemented group, epirubicin
induced a 45% decrease in tumor size, whereas tumor size
continued to increase in the corn oil-supplemented group
[15]. Based on their initial observational study and the
encouraging animal work, the investigators initiated a study
examining effects of DHA supplementation on epirubicin
efficacy in breast cancer patients. Early results of this study
were presented at the Annual Meeting of the American
Association of Cancer Researchers in 2006 [26]. Patients
were supplemented with 1.8 g of DHA provided as 4.5 g of
DHASCO, and plasma phospholipid DHA levels were
determined at the time of enrollment and after 10 days of
supplementation. Not all patients incorporated DHA in the
lipid pool equally well, suggesting an effect of cancer on n-
3 metabolism, so the sample was divided into a high DHA-
incorporating group and a low DHA-incorporating group.
When patient survival was assessed at 42 months, median
survival had not been reached in the high-DHA group (i.e.,
more than 50% of the high-DHA group patients were still
alive), whereas the median survival in the low-DHA group
was 18 months (Pb.004). In addition, the median time to
progression was significantly higher in the high-DHA group
compared to the low-DHA group (8.7 vs. 4.35 months,
respectively; Pb.03). Similarly, there were improvements in
toxicity with less anemia and thrombocytopenia in the high-
DHA group (Pb.006 and Pb.01 respectively). This study
suggests that successful supplementation with DHA could
reduce toxic effects and perhaps improve the efficacy of
epirubicin treatment.

To our knowledge, only two studies have examined the
influence of other dietary components on the ability of n-3
PUFA to moderate responses to chemotherapy. Dietary
DHA had a moderate protective effect against intestinal
damage induced by 5-fluorouracil administration in rats,
but this effect was improved by the addition of dietary
protein [20]. Among tumor-bearing mice, the addition of
vitamins E and/or C to a fish oil diet during cisplatin
administration decreased lung tumor weight to a greater
extent than consumption of the fish oil diet alone during
cisplatin treatment [27]. These interesting, albeit prelimin-
ary, studies warrant further investigation into the effects of
combining n-3 PUFA with other food-derived compounds
believed to influence tumor growth on tumor cell
chemotherapeutic sensitivity.
3. Mechanisms by which n-3 fatty acids modify
cellular function

It is well established that increasing the consumption of
the long-chain n-3 PUFA can impact numerous processes in
the body, including cancer and cardiovascular, neurological
and immune functions [28–30]. Several candidate mechan-
isms have been proposed to explain the varied effects of n-3
PUFA on cellular function (Table 2). Long-chain n-3 PUFA
are incorporated into the phospholipids of cell membranes of
many cell types, such as immune cells, following inclusion
in the diet [58,59]. Alterations in membrane fatty acid
composition as a result of n-3 PUFA incorporation may lead
to changes in membrane fluidity, membrane-mediated
functions and signals (e.g., eicosanoids, lipid second
messengers, signaling proteins) as well as the composition
of lipid rafts and their functions. n-3 PUFA also alter gene
expression and transcription factor activity; whether or not
this is related to their incorporation into membrane
phospholipids remains to be elucidated.
4. Mechanisms of n-3 PUFA-induced modulation of
tumor cell response to chemotherapy

Although animal studies, and the few clinical trials that
have been conducted, support a beneficial role for supple-
mentation with n-3 PUFA before or during chemotherapy,
the mechanism(s) have not been clearly established.
Elucidation of these mechanisms is essential to ensure both
optimal efficacy of chemotherapy drugs and to develop
target levels at which to modify the diet or supplement with
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Table 3
Potential mechanisms by which n-3 PUFA modulate the tumor response to
chemotherapy

Mechanism References

Altered membrane-associated signal transduction [7,47,48,57,60]
Increased lipid peroxidation causing irreversible

cell damage
[15,61,62]

Decreased NFκB activity [54,56,57,63]
Enhanced drug uptake or intracellular accumulation [64–66]
Altered expression or function of apoptotic

or antiapoptotic proteins
[8,67–70]

Enhanced nucleoside analogue drug activity [71]
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n-3 PUFA so as to optimize the benefits to the patient.
Potential mechanisms by which n-3 PUFA may improve the
efficacy of chemotherapeutic drugs are presented in Table 3.

4.1. Effects on membrane-associated signal transduction

Diet significantly influences cell membrane lipid compo-
sition. Inclusion of n-3 PUFA in the diet leads to their
incorporation into membrane phospholipids [58,59]. EPA
and DHA may alter the distribution or function of
membrane-associated signaling molecules by inducing
changes in physical properties of membranes due to their
long-chain, highly unsaturated nature, or perhaps by some
other mechanism. The following discussion provides some
examples of n-3 PUFA effects on membrane-related signal
transduction, and how these might affect tumor cell
susceptibility to chemotherapy.

4.1.1. Ras signaling
Constitutive activation of Ras signaling pathways plays a

key role in tumor development and progression, since Ras
proteins (H-ras, K-ras, N-ras) promote cell growth, differ-
entiation, survival and resistance to apoptosis [72]. These
guanine-nucleotide binding proteins cycle between inactive
GDP-bound and active GTP-bound forms, a process that is
dependent on interactions with plasma membranes [73]. Ras
proteins must undergo posttranslational modification (farne-
sylation, palmitoylation) to interact with membrane lipids,
where they are activated and bind GTP [74]. Given the
importance of elevated Ras signaling in tumor growth
promotion, Ras pathway inhibitors (e.g., farnesyl transferase
inhibitors) are being developed and tested singly and in
combination with other anticancer therapies [72,74–76].

Several studies have reported effects of n-3 PUFA on Ras
signaling. A high-fat fish oil diet fed to rats decreased protein
levels of total and membrane bound Ras, increased protein
levels of cytosolic Ras and decreased farnesyl protein
transferase activity in colonic mucosa and colon tumors
compared to rats fed a high-fat corn oil diet [77,78],
suggesting that n-3 PUFA may interfere with Ras activation
by decreasing its membrane localization. In vitro, DHA
treatment of mouse colon cells decreased Ras GTP binding
and Ras localization to the plasma membrane compared to
cells treated with linoleic acid [79]. In this study, there was
no effect of DHA on farnesyl transferase activity or Ras
palmitoylation [79]. However, DHA enrichment in cell
membranes was found to be necessary for inhibiting Ras
localization to the plasma membrane [80]. Recent findings
have demonstrated a partitioning of Ras into lipid rafts and
caveolae [81], and effects of n-3 PUFA on Ras membrane
compartmentalization have been examined in vivo. Ma et al.
[47] reported decreased levels of H-Ras protein in colonic
caveolae of mice fed n-3 PUFA vs. n-6 PUFA. This was
accompanied by decreased H-ras activity in colonic
epithelium of the n-3 PUFA-fed mice. n-3 PUFA were
significantly incorporated into caveolae phospholipids,
suggesting that alterations in the caveolae lipid environment
can lead to protein displacement from these membrane
microdomains [47]. Taken together, these studies suggest
that n-3 PUFA may affect Ras signaling and could potentiate
effects of anti-Ras therapies.

4.1.2. PI3K/Akt signaling
The PI3K/Akt signaling pathway plays an important role

in cell cycle progression. PI3K regulates a number of cellular
functions including proliferation, apoptosis, differentiation
and chemotaxis [82]. PI3K catalyzes phosphorylation on
position-3 of phosphatidylinositides, mainly PIP2, to form
PIP3. Akt (also known as protein kinase B) is a primary
mediator of PI3K signaling. Akt is a serine/threonine kinase
that is recruited to the plasma membrane through direct
contact with PIP3, where it is phosphorylated and activated
[82]. Akt functions directly to promote cell survival and
protect cells from apoptotic cell death, by phosphorylating
and inactivating components of the cell death machinery
(e.g., caspase-9, BAD). In addition, Akt can indirectly
promote cell survival by activating prosurvival transcription
factors such as nuclear factor-κB (NFκB) [82].

Recent evidence suggests that the PI3K/Akt signaling
pathway is constitutively active in many types of human
cancer [83]. Overexpression of Akt has also been linked to
resistance to chemotherapy [84]. Stably transfecting breast
cancer cells with constitutively active Akt attenuated
doxorubicin-induced apoptosis [85]. Ovarian cancer cells
overexpressing constitutively active Akt, or containing Akt
gene amplification, were highly resistant to paclitaxel
treatment, as compared to cells expressing low levels of
Akt [86]. Activation of Akt has also been implicated as one
of the mechanisms involved in mammary tumor resistance to
tamoxifen [60].

Inhibition of PI3K/Akt signaling by various compounds
(PI3K inhibitors, dominant-negative Akt mutants) enhances
chemosensitivity [85,87–90]. EPA and/or DHA decrease
both Akt phosphorylation [57] and activity [60] in
mammary tumor cells in vitro. Consequently, EPA
enhanced sensitivity to tamoxifen in breast cancer cells
that expressed constitutively active Akt [60]. EPA and/or
DHA have also been reported to prevent Akt phosphoryla-
tion or activation in several other cell types [53,91–93].
Thus, changes in cellular concentrations of long-chain n-3



791P.D. Biondo et al. / Journal of Nutritional Biochemistry 19 (2008) 787–796
PUFA may affect the chemotherapeutic response by altering
Akt activity in tumor cells.

4.1.3. Her-2/neu signaling
Her-2/neu is a transmembrane tyrosine kinase receptor

belonging to the epidermal growth factor receptor (EGFR)
family. Overexpression of Her-2/neu confers resistance to
taxane-based chemotherapy; down-regulation of this
protein sensitizes cells to taxanes [94–96]. DHA treatment
of Her-2/neu-overexpressing breast cancer cells reduced
Her-2/neu protein expression and enhanced cytotoxic
effects of paclitaxel and docetaxel [7]. Although the
authors did not specifically measure DHA incorporation
into membrane lipids, the 24-h incubation of breast cancer
cells with fatty acid is presumed adequate for incorpora-
tion into cellular phospholipids [97,98].

4.1.4. Lipid raft-associated signaling
Lipid rafts are membrane microdomains rich in saturated

fatty acids, sphingolipids, cholesterol and several signaling
proteins [99]. A subset of specialized rafts termed caveolae
has also been described, which are flask-shaped invagina-
tions in the membrane that are enriched in the integral
membrane protein caveolin [99]. n-3 PUFA incorporation
into rafts or caveolae can alter the distribution or function of
raft-associated signaling proteins. Studies from our own
laboratory show that EPA and DHA are incorporated into
whole membranes and lipid rafts of breast cancer cells in
vitro, and this is associated with reduced EGFR levels in the
rafts and increased whole cell levels of phosphorylated
EGFR [48]. In this case, the increased EGFR phosphoryla-
tion did not appear to promote cell growth but rather was
associated with p38 MAPK phosphorylation and possibly
induction of apoptosis. In vivo, mice fed a diet enriched with
n-3 PUFA had increased levels of EPA and DHA and
decreased levels of H-ras and eNOS in colonic caveolae
[47]. Alterations in raft lipid composition by polyunsaturated
fatty acids have also been shown to displace signaling
proteins from rafts in immune cells [43,44,100]. The study
of lipid rafts is still a relatively young science, and whether
or not effects of n-3 PUFA on raft-associated signal
transduction affect the tumor cell response to chemotherapy
remains to be elucidated.

4.2. Lipid peroxidation

PUFA, particularly the long-chain n-3 PUFA, are
susceptible to free radical attack, ultimately leading to
formation of lipid hydroperoxides. Lipid peroxidation is
initiated by hydrogen abstraction from an unsaturated fatty
acid by reactive oxygen species. The resulting lipid radical
reacts with oxygen to form a fatty acid peroxyl radical, which
can attack adjacent fatty acid chains in cell membranes, and
thus propagate lipid peroxidation [101]. The major effects of
the products of lipid peroxidation are inhibition of DNA
synthesis, cell division and tumor growth, and induction of
tumor cell death [102,103].
Drugs belonging to the anthracycline family of che-
motherapeutic compounds (e.g., doxorubicin, epirubicin and
daunorubicin) are thought to induce tumor cell death in part
by stimulating formation of oxygen free radicals and
ultimately causing irreversible cell damage [104]. The
long-chain n-3 PUFA may potentiate the peroxidizing effects
of such drugs. Germain et al. [5] reported that DHA (29 μM)
increased doxorubicin cytotoxicity toward MDA-MB-231
human breast cancer cells in culture, and this effect was
increased by addition of an oxidant system and decreased by
addition of α-tocopherol, an antioxidant. In rats, DHA fed at
approximately 0.7 g/day, for several weeks prior to and 6
weeks during chemotherapy, enhanced epirubicin cytotoxi-
city toward mammary tumors; the effect was countered by
adding α-tocopherol to the diet [15].

Arsenic trioxide is an antineoplastic agent that has
been used to treat acute promyelocytic leukemia since the
1970s [61]. Arsenic trioxide is believed to induce
apoptosis by a reactive oxygen species-dependent path-
way [61]. DHA (25 μM) enhanced the efficacy of arsenic
trioxide and increased reactive oxygen species levels in
leukemia cells in vitro [61]; this effect was abrogated by
addition of vitamin E [61]. Similarly, addition of vitamin
E abolished the sensitization of neuroblastoma cells by
DHA (25–150 μM) to arsenic trioxide in vitro [12].

Further support for this mechanism comes from a study
reporting that 30 μM DHA induced an increase in
doxorubicin efficacy toward human breast cancer cells in
culture. This was accompanied by an increase in cellular
malondialdehyde and glutathione concentrations, markers of
oxidative stress [6]. In mice fed a 3%w/w fish oil concentrate
(34% EPA, 24% DHA) prior to, and for 5 weeks during
chemotherapy, there was increased doxorubicin efficacy
toward mammary tumors. This was accompanied by
increased lipid peroxidation and a decreased ratio of GPX:
SOD activity, a putative indicator of increased oxidative
stress [16,105].

4.3. Effects on NFκB signaling

Nuclear factor-κB is a transcription factor that plays a
key role in cellular survival, growth, differentiation,
adhesion and inflammation [106]. Active NFκB promotes
cellular survival and inhibits apoptosis by regulating the
expression of a number of genes involved in cell
transformation, proliferation, invasion and apoptosis (e.g.,
cyclin D1, Akt, bcl-2, bcl-xl, matrix metalloproteinases)
[106]. As a result, NFκB has been implicated as a promoter
of tumorigenesis. Indeed, several tumor types express
constitutively active NFκB [106–108], which may confer
a selective growth advantage.

Most chemotherapeutic agents increase NFκB expres-
sion [106]. This may be an adaptive mechanism by tumor
cells to prevent apoptosis induced by the DNA-damaging
effects of chemotherapy. It was hypothesized that drug-
induced NFκB activation contributes to resistance to
chemotherapy-induced apoptosis [106,107,109,110]. More
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recently it was reported that patients with breast tumors that
expressed activated NFκB (i.e., nuclear staining in tumor
specimens) prior to chemotherapy treatment had a sig-
nificantly lower clinical response to chemotherapy than
patients with undetectable NFκB staining [111]. Moreover,
the number of patients with activated NFκB in tumor tissue
increased after chemotherapy exposure [111], consistent
with reports of chemotherapy-induced activation of NFκB.

Several studies now support that inhibition of NFκB
can sensitize tumor cells to chemotherapeutic drugs
[106,107,112–114]. Natural and synthetic inhibitors of
NFκB are currently being studied as potential adjuvants to
traditional anticancer therapies [115]. We and others have
shown that the long-chain n-3 PUFA decrease NFκB
activity or expression in human breast tumor cells [57,63].
Several other studies indicate that n-3 PUFA down-regulate
NFκB activation in monocytes, macrophages and T cells
[53–56,116]. These data suggest that the long-chain n-3
PUFA may be able to sensitize tumor cells to the effects of
chemotherapy by decreasing NFκB activity or expression.
It is not clear how n-3 PUFA modulate NFκB activity;
however, it has been suggested that these fatty acids
modulate upstream signaling involved in the activation of
NFκB, such as Akt activation [53,57], TNF-α signaling
[52,54], phospholipase C activation [52] and IκBα
phosphorylation [54,55].

4.4. Effect on drug uptake

n-3 PUFA are readily incorporated into tumor cell
membranes when provided in the diet or in cell culture
media [48,97,117,118]. n-3 PUFA enrichment can affect
physical properties of cell membranes, altering membrane
fluidity in vivo [33] and in vitro [34], and increasing the
permeability of tumor cells ex vivo [35,36]. It has been
suggested that this alteration of membrane permeability may
modify the influx and efflux of drugs into and/or out of
tumor cells [65], particularly hydrophobic drugs that pass
through the membrane by diffusion. In support of this,
enrichment of cell membranes with DHA and/or EPA
correlates with an increase in the intracellular accumulation
and/or retention of chemotherapeutic drugs (doxorubicin,
vincristine, mitoxantrone) and enhanced drug cytotoxicity in
a variety of tumor cell types [62,64–66,119,120].

Increased drug uptake may also be related to n-3 PUFA
effects on transport proteins within the membrane. Most
nucleoside analogue drugs are hydrophilic and their cellular
uptake is mediated by specific membrane transporters. EPA
and DHA treatment increased the rate of purine uptake by a
nucleoside transport protein in lymphoblastic leukemia cells
in vitro [121]. There were no changes in the affinity or
number of binding sites of the transporter, suggesting that
fatty acids somehow directly interact with the transporter and
affect its function (perhaps through their incorporation into
the membrane, or altering the tertiary or quaternary structure
of the protein) [121]. Several chemotherapy drugs are
nucleoside analogues, and the action of n-3 PUFA in
increasing their uptake by tumor cells could have a
significant impact on their effectiveness.

Alternatively, expression of the multidrug transporter
P-glycoprotein (Pgp) is under the control of NFκB
[122,123]. Increased tumor cell expression of Pgp (which
can be acquired over time with repeated exposure to
chemotherapy) can increase efflux of drugs from cells, and
this is believed to contribute to the multidrug resistant
phenotype of many tumors [109]. As NFκB activity itself
can be regulated by n-3 PUFA, it is possible that this
modulation of NFκB expression in a tumor could decrease
Pgp expression, leading to decreased efflux of chemotherapy
drugs from tumor cells.

4.5. Effects on mediators of apoptosis

The majority of chemotherapeutic drugs are believed to
kill tumor cells by inducing or increasing apoptosis
[124,125]. Resistance to apoptosis can result in a decrease
in tumor cell sensitivity to many chemotherapies [124].
Agents that can increase the expression of proapoptotic
proteins and down-regulate antiapoptotic proteins may hold
promise as effective adjuvants to standard chemotherapies.

A few studies provide evidence that n-3 PUFA can
regulate expression or activity of apoptotic proteins in tumor
cells. DHA or EPA treatment of breast or colon cancer cells or
leukemia cells in vitro decrease the expression of the
antiapoptotic protein bcl-2 [67,68,126,127]. In addition,
DHA treatment increased expression of the proapoptotic
protein bax in HL-60 human leukemia cells [69]. In human
pancreatic cell lines, EPA treatment induced apoptosis and
increased caspase-3 activation [70]. Studies from our own
laboratory showed that EPA and DHA induced apoptosis
and increased caspase activity in human breast cancer cells
[57]. These data support the hypothesis that n-3 PUFA
enhance the proapoptotic effect of anticancer drugs. This is
also supported by a study by Calviello et al. [8], who
showed that DHA can act in a synergistic manner with
5-fluorouracil to inhibit cell growth and induce apoptosis of
colon cancer cells in vitro. The combination of DHA and
5-fluorouracil decreased expression of the antiapoptotic
proteins bcl-2 and bcl-XL more than either agent did alone,
suggesting that DHA was able to enhance 5-fluorouracil's
apoptotic effect.

4.6. Effects on nucleoside analogue metabolism

Deoxycytidine kinase (dCK) and deoxycytidine deami-
nase (dCDA) are key enzymes involved in activation and
inactivation, respectively, of a variety of nucleoside
analogue chemotherapeutic drugs like Ara-C, cladribine
and gemcitabine [128]. Reduced tumor cell levels of dCK,
and/or increased dCDA levels, have been linked to
resistance to nucleoside analogue drugs [129–132]. In a
study comparing effects of DHA on dCK and dCDA
activities in normal vs. transformed rat fibroblasts, DHA
increased dCK and decreased dCDA activities in trans-
formed cells, whereas the opposite effect was seen in normal
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cells [71]. Mechanisms for the selective effect of DHA on
normal vs. transformed cells are not known. However, these
results are consistent with reports suggesting that n-3 PUFA
can enhance the effectiveness of chemotherapy drugs
toward tumor cells while at the same time reduce toxicity
to normal cells.
5. Summary

Animal studies have clearly demonstrated that feeding n-
3 fatty acids can prevent tumor development and growth by
many different mechanisms. Epidemiological population
studies have suggested an inverse relationship between n-3
PUFA consumption and risk of cancers of the breast and
colon [133], but prospective cohort studies examining the
effects of n-3 PUFA on cancer incidence have yielded mixed
results [134]. To date, no human intervention trials have been
conducted to specifically investigate the effects of n-3 PUFA
consumption on cancer risk, although many have examined
effects of n-3 PUFA on cancer cachexia, and a few have
reported effects on biomarkers of cancer development.

Based on animal and epidemiological evidence, there are
currently guidelines aimed at both individuals and the
population at large to prevent cancer. Currently, there are no
specific nutrition/nutrient guidelines for those undergoing
chemotherapy. This review has illustrated that there are a
growing number of studies on human cancer cell lines and in
animal models of cancer that show incorporation of, or
metabolism of, long-chain n-3 fatty acids DHA and/or EPA,
found naturally in our diet in fatty fish, can alter the activity
and/or toxicity of many chemotherapy drugs used to treat
cancer. Studies suggest not one but multiple mechanisms
within the cell may contribute to the effects of these fatty
acids. Despite this evidence, few clinical studies have been
conducted that test the hypothesis that feeding n-3 fatty acids
in the short period prior to and/or during chemotherapy could
improve the efficacy of treatment. Unlike many chemother-
apy agents used, n-3 fatty acid administration does not
appear to have toxic effects to noncarcinogenic cells; rather,
n-3 PUFA may improve immune function, including the
anticancer response [59,118]. Just how n-3 fatty acids
selectively modify the response of tumor cells, but not
normal host tissues, to chemotherapeutic agents remains to
be elucidated. However, some evidence suggests that fatty
acid uptake and/or metabolism by tumor cells differs from
that of nontransformed cells [135–137].

Future research holds the key to enabling us to prescribe
n-3 PUFA as adjuvants to chemotherapy. Although promis-
ing, there are still several questions that need to be answered
before we can prescribe a specific dose of n-3 fatty acids to
act as adjuvants to chemotherapy. Specifically, we need to
identify specific mechanisms by which n-3 fatty acids act
and then determine optimal cellular/membrane levels of n-3
PUFA required to promote these mechanisms and increase
drug efficacy while decreasing toxicity to the host.
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